
Input Device Manager Manual
Pixel Crushers Common Library

Copyright © Pixel Crushers. All rights reserved.

Contents
Chapter 1: Input Device Manager Overview...4

How to Get Help..4
Chapter 2: Reading Input..4
Chapter 2: New Input System...5
Chapter 3: Rewired... 6
Chapter 4: Other Input Systems..6

Chapter 1: Input Device Manager Overview
The Input Device Manager is an optional component that handles input for Pixel Crushers assets. It
provides these features:

• Automatically detect when mouse, joystick, or keyboard is being used.
• When joystick or keyboard are used, it can be configured to hide the mouse cursor, and Pixel

Crushers UIs ensure that a button is focused (selected) so the user can navigate buttons.
• Ability to use traditional Unity Input manager, new Input System, or other input systems.

The Input Device Manager detects changes by monitoring mouse movement and joystick & keyboard
presses. You can configure which inputs to check in the Input Device Manager’s Inspector.

The Input Device Manager may be found on its own GameObject. If using the Dialogue System for Unity,
it is usually placed on the Dialogue Manager GameObject. By default, the Input Device Manager makes
its GameObject into a singleton that survives scene changes.

How to Get Help

We’re here to help! If you get stuck or have any questions, please contact us any time at
support@pixelcrushers.com or visit http://pixelcrushers.com.

We do our very best to reply to all emails within 24 hours. If you haven't received a reply within 24 hours,
please check your spam folder.

Chapter 2: Reading Input
The Input Device Manager provides an abstract wrapper that can read input from traditional Unity Input,
Unity’s new Input System, or other input systems such as Rewired.

Use these methods to read input:

bool InputDeviceManager.IsButtonDown(“button name”)
bool InputDeviceManager.IsButtonUp(“button name”)
bool InputDeviceManager.IsKeyDown(KeyCode)
float InputDeviceManager.GetAxis(“axis name”)
Vector3 InputDeviceManager.GetMousePosition()

See also: Input Device Manager API Reference

4

https://www.pixelcrushers.com/dialogue_system/manual2x/html/class_pixel_crushers_1_1_input_device_manager.html
http://pixelcrushers.com/
mailto:support@pixelcrushers.com

Chapter 2: New Input System
To use Unity’s new Input System package, define the scripting symbol USE_NEW_INPUT. If you’re using
the Dialogue System, the Welcome Window provides a checkbox to automatically define this symbol for
you.

After you define your inputs, typically in an Input Actions asset, you must register them with the Input
Device Manager before calling any of the InputDeviceManager input query functions such as
InputDeviceManager.IsButtonDown and InputDeviceManager.GetAxis. To register the inputs, add an

Input Actions Registry component to your Input Device Manager GameObject and assign the action
inputs to it:

Or, if you want to use your own C# script, use InputDeviceManager.RegisterInputAction. Use

InputDeviceManager.UnregisterInputAction to unregister them. Example:

using UnityEngine;
using UnityEngine.InputSystem;
using PixelCrushers;

public class RegisterMyControls : MonoBehaviour
{
 protected static bool isRegistered = false;
 private bool didIRegister = false;
 private Controls controls;

 void Awake()
 {
 controls = new MyControls();
 }

 void OnEnable()
 {
 if (!isRegistered)
 {
 isRegistered = true;
 didIRegister = true;
 controls.Enable();
 InputDeviceManager.RegisterInputAction("Back", controls.Gameplay.Back);
 InputDeviceManager.RegisterInputAction("Interact", controls.Gameplay.Interact);
 }
 }

 void OnDisable()
 {
 if (didIRegister)

Chapter 2: New Input System 5

 {
 isRegistered = false;
 didIRegister = false;
 controls.Disable();
 InputDeviceManager.UnregisterInputAction("Back");
 InputDeviceManager.UnregisterInputAction("Interact");
 }
 }
}

The code above registers two inputs: “Back” and “Interact” so you can use them in InputDeviceManager
queries. Add it to your scene (e.g., to the Dialogue Manager GameObject if using the Dialogue System.)

Review the input values already assigned by default to the Input Device Manager, such as “Back”, and
also including any key code dropdowns, which the Input Device Manager will attempt to interpret as Input
System inputs. For example, the key code “Joystick Button 0” will make the Input System look for a
registered input named “joystickbutton0”. Unless you register equivalent inputs as described above, the
Input System will report errors.

UI Button Hotkeys

To map a UI button to a new Input System input, register the input as described above. Then add a UI
Button Key Trigger component to the UI button. Set the Key dropdown to None, or to a key code if you’d
like to map a key to the button. Set the Button field to the name of the registered input.

Unity UI Navigation

Check your scenes’ EventSystem GameObjects. They should have an InputSystemUIInputModule
component, not a StandaloneInputModule.

Chapter 3: Rewired
To use Rewired, import this package:

Plugins > Pixel Crushers > Common > Third Party Support > Rewired Support

Then add an Input Device Manager Rewired component to the same GameObject as the Input Device
Manager. Both components are required to use Rewired with the Input Device Manager. Queries such as
InputDeviceManager.IsButtonDown will use Rewired instead of Unity Input.

Chapter 4: Other Input Systems
To use other input systems, you can assign your own methods to the Input Device Manager component’s
GetButtonDown, GetButtonUp, and GetAxis delegates.

Chapter 4: Other Input Systems 6

	Chapter 1: Input Device Manager Overview
	How to Get Help

	Chapter 2: Reading Input
	Chapter 2: New Input System
	UI Button Hotkeys
	Unity UI Navigation

	Chapter 3: Rewired
	Chapter 4: Other Input Systems

